SINEAX M 563 with 3 analogue outputs Programmable multi-transducer for industry

for the measurement of electrical variables in heavycurrent power system

C

Fig. 1. SINEAX M 563 transducer in housing P20/105 clipped onto a top-hat rail.

Fig. 2. Screen print-out from the configuration software.

$1=$ Input transformer $(11, \mid 2,13) \quad 5=$ Microcontroller
$1=$ Voltage divider (L1, L2, L3) $\quad 6=$ Electrical insulation
2 = Multiplexer
7 = D/A converter
$3=$ Latching stage $8=$ Output stage
$4=$ A/D converter $\quad 9=\mathrm{DC}, \mathrm{AC}$ power pack
Fig. 3. Block diagram.

SINEAX M 563 with 3 analogue outputs Programmable multi-transducer for industry

Symbols

Symbols	Meaning	Symbols	Meaning (Continuation)		
	Measured variable Lower limit of the measured variable Break point of the measured variable Upper limit of the measured variable Output variable Lower limit of the output variable Break point of the output variable Upper limit of the output variable Programmed upper limit of the output variable Input voltage Rated value of the input voltage Phase-to-phase voltage L1-L2 Phase-to-phase voltage L2 - L3 Phase-to-phase voltage L3-L1 Phase-to-neutral voltage L1 - N Phase-to-neutral voltage L2 - N Phase-to-neutral voltage L3-N Input current AC current L1 AC current L2 AC current L3 Rated value of the input current Average value of the currents $(11+12+13) / 3$ Average value of the currents and sign of the active power (P) RMS value of the current with wire setting range (bimetal measuring function) Response time for IB Slave pointer function for the measurement of the RMS value IB Response time for BS Phase-shift between current and voltage Frequency of the input variable Rated frequency Active power of the system $\mathrm{P}=\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3$ Active power phase 1 (phase-to-neutral L1 - N) Active power phase 2 (phase-to-neutral L2 - N) Active power phase 3 (phase-to-neutral L3-N)	S S1 S2 S3 Sr PF PF1 PF2 PF3 QF QF1 QF2 QF3 LF LF1 LF2 LF3 C R Rn H Hn CT VT	Reactive power of the system $\mathrm{Q}=\mathrm{Q} 1+\mathrm{Q} 2+\mathrm{Q} 3$ Reactive power phase 1 (phase-to-neutral L1-N) Reactive power phase 2 (phase-to-neutral L2 - N) Reactive power phase 3 (phase-to-neutral L3-N) Apparent power of the system Apparent power phase 1 (phase-to-neutral L1 - N) Apparent power phase 2 (phase-to-neutral L2 - N) Apparent power phase 3 (phase-to-neutral L3-N) Rated value of the apparent power of the system Active power factor $\cos \varphi=P / S$ Active power factor phase $1 \quad \mathrm{P} 1 / \mathrm{S} 1$ Active power factor phase $2 \mathrm{P} 2 / \mathrm{S} 2$ Active power factor phase $3 \quad \mathrm{P} 3 / \mathrm{S} 3$ Reactive power factor $\sin \varphi=Q / S$ Reactive power factor 1 Q1/S1 Reactive power factor 2 Q2/S2 Reactive power factor 3 Q3/S3 Power factor of the system $L F=\operatorname{sgn} Q \cdot(1-\|P F\|)$ Power factor phase 1 sgnQ1•(1-\|PF1) Power factor phase 2 sgnQ2 • (1 - PFF2\|) Power factor phase 3 sgnQ3 • (1 - \|PF3) Factor for the intrinsic error Output load Rated burden Power supply Rated value of the power supply c.t. ratio v.t. ratio

Applicable standards and regulations

IEC 688 or
EN 60688

IEC 1010 or EN 61010
iEC 529 or
EN 60529
IEC 1000-4-2/-3/-4/-5/-6

EN 55011

IEC 68-2-1/-2/-3/-6/-27 or
EN 60 068-2-1/-2/-3/-6/-27 Ambient tests

DIN 40110
DIN 43807
UL 94

Technical data
Measuring input -
Nominal input voltage:

Nominal input current:
Admissible measuring range end values:

Waveform:
Rated frequency:
Consumption [VA]:
-1 Cold, -2 Dry heat, -3 Damp heat, -6 Vibration, -27 Shock
Electrical measuring transducers for converting AC electrical variables into analogue and digital signals

Safety regulations for electrical measuring, control and laboratory equipment

Protection types by case (code IP)
Electromagnetic compatibility for in-dustrial-process measurement and control equipment
Electromagnetic compatibility of data processing and telecommunication equipment
Limits and measuring principles for radio interference and information equipment

AC quantities

Terminal markings
Tests for flammability of plastic materials for parts in devices and appliances
57.7 to 400 V
(phase-to-neutral)
or
100 to 693 V
(phase-to-phase)
1 to 6 A

See page 4 under "System response", column "Condition", and pages 9 and 10 under "Description 13 and 14 "

Sinusoidal

50 or 60 Hz
Voltage circuit: U2 / $400 \mathrm{k} \Omega$ with external power supply
Current circuit: $\leq I^{2} \cdot 0,01 \Omega$

Thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Interval between two overloads	
Current circuit	400 V single-phase AC system 693 V three-phase system			
12 A	-	contin.	-	
120 A	10	1 s	100 s	
120 A	5	3 s	5 min.	
250 A	1	1 s	1 hour	
Voltage circuit				
$480 \mathrm{~V} / 831 \mathrm{~V}^{1}$	-	contin.	-	
$600 \mathrm{~V} / 1040 \mathrm{~V}^{1}$	10	10 s	10 s	
$800 \mathrm{~V} / 1386 \mathrm{~V}^{1}$	10	1 s	10 s	

${ }^{1}$ Maximum 264 V across the power supply when it is obtained from the measured variable with a power supply unit for $85 . . .230 \mathrm{~V}$ DC/AC and maximum 69 V with a power supply unit for 24... 60 V DC/AC.

Analogue outputs Θ

For the outputs A, B and C :

Output variable Y	Impressed DC current	Impressed DC voltage
Full scale Y2	$1 \leq \mathrm{Y} 2 \leq 20 \mathrm{~mA}$	$5 \leq \mathrm{Y} 2 \leq 10 \mathrm{~V}$
Limits of output signal for input overload and/or $\quad \mathrm{R}=0$	$1.2 \cdot \mathrm{Y} 2$	40 mA
$\mathrm{R} \rightarrow \infty$	30 V	1.2 Y 2
Rated useful range of output load	$0 \leq \frac{7.5 \mathrm{~V}}{\mathrm{Y} 2} \leq \frac{15 \mathrm{~V}}{\mathrm{Y} 2}$	$\frac{\mathrm{Y} 2}{2 \mathrm{~mA}} \leq \frac{\mathrm{Y} 2}{1 \mathrm{~mA}} \leq \infty$
AC component of output signal (peak-to-peak)	$\leq 0.02 \mathrm{Y} 2$	$\leq 0.02 \mathrm{Y} 2$

The outputs A, B and C may be either short or open-circuited. They are electrically insulated from each other and from all other circuits (floating).
All the full-scale output values can be reduced subsequently using the programming software, but a supplementary error results.

SINEAX M 563 with 3 analogue outputs Programmable multi-transducer for industry

Reference conditions

Ambient temperature:
Pre-conditioning:
Input variable:
Power supply:
Active/reactive factor:
Frequency:
Waveform:
Output load:

Miscellaneous:

System response

Accuracy class:
$15 \ldots 30^{\circ} \mathrm{C}$
30 min. acc. to EN 60688
Rated useful range
$H=H n \pm 1 \%$
$\cos \varphi=1$ resp. $\sin \varphi=1$
50 or 60 Hz
Sinusoidal, form factor 1.1107
DC current output:
$R_{n}=\frac{7.5 \mathrm{~V}}{\mathrm{Y} 2} \pm 1 \%$
DC voltage output:
$R_{n}=\frac{Y 2}{1 \mathrm{~mA}} \pm 1 \%$
EN 60688

Duration of the
measurement cycle:

Response time:

Factor c (the highest value applies):
Linear characteristic:

$$
c=\frac{1-\frac{Y O}{Y 2}}{1-\frac{X 0}{X 2}} \text { or } c=1
$$

Bent characteristic:
$\mathrm{X} 0 \leq \mathrm{X} \leq \mathrm{X} 1$
$c=\frac{Y 1-Y 0}{X 1-X 0} \cdot \frac{X 2}{Y 2}$ or $c=1$
$c=\frac{1-\frac{Y_{1}}{Y_{2}}}{1-\frac{X_{1}}{X_{2}}}$ or $c=1$
$X 1<X \leq X 2$
Approx. 0.6 to 1.6 s at 50 Hz , depending on measured variable and programming

1 ... 2 times the measurement cycle

Fig. 4. Examples of settings with linear characteristic.

Fig. 5. Examples of settings with bent characteristic.
(System response inversely configurable)

Influencing quantities and permissible variations

Acc. to EN 60688

Safety

Protection class: II (protection isolated, EN 61 010-1)
Enclosure protection: IP 40, housing
(test wire, EN 60 529)
IP 20, terminals
(test finger, EN 60 529)
Pollution degree:
Installation category:
2
III (with $\leq 300 \mathrm{~V}$ versus earth)
II (with > 300 V versus earth)
Insulation test (versus earth): Inputs: $\quad 300 V^{2)}$
$600 \mathrm{~V}^{3)}$
Power supply: 230 V
Outputs: 40 V

[^0][^1](the reference value is the full-scale value Y 2)

Measured variable X	Condition	Accuracy class ${ }^{1)}$
System: Active, reactive and apparent power	$\begin{aligned} & 0.5 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 1.5 \\ & 0.3 \leq \mathrm{X} 2 / \mathrm{Sr}<0.5 \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{c} \\ & 1.0 \mathrm{c} \end{aligned}$
Phase: Active, reactive and apparent power	$\begin{aligned} & 0.167 \leq \mathrm{X} 2 / \mathrm{Sr} \leq 0.5 \\ & 0.1 \leq \mathrm{X} 2 / \mathrm{Sr}<0.167 \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{c} \\ & 1.0 \mathrm{c} \end{aligned}$
Power factor, active power and reactive power	$\begin{aligned} & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & (\mathrm{X} 2-\mathrm{XO})=2 \\ & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & 1 \leq(X 2-X 0)<2 \\ & 0.5 \mathrm{Sr} \leq \mathrm{S} \leq 1.5 \mathrm{Sr}, \\ & 0.5 \leq(X 2-X 0)<1 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & (X 2-X 0)=2 \\ & 0.1 \mathrm{Sr} \leq \mathrm{S}<0.5 \mathrm{Sr}, \\ & 1 \leq(X 2-X 0)<2 \\ & 0.1 \mathrm{Sr} \leq S<0.5 \mathrm{Sr}, \\ & 0.5 \leq(X 2-X 0)<1 \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{c} \\ & 1.0 \mathrm{c} \\ & 2.0 \mathrm{c} \\ & 1.0 \mathrm{c} \\ & 2.0 \mathrm{c} \\ & 4.0 \mathrm{c} \end{aligned}$
AC voltage	$0.1 \mathrm{Ur} \leq \mathrm{U} \leq 1.2 \mathrm{Ur}$	0.5 c
AC current / current averages	0.1 Ir $\leq 1 \leq 1.2 \mathrm{lr}$	0.5 c
System frequency	$\begin{aligned} & 0.1 \mathrm{Ur} \leq \mathrm{U} \leq 1.2 \mathrm{Ur} \\ & \text { resp. } \\ & 0.1 \mathrm{Ir} \leq \mathrm{I} \leq 1.2 \mathrm{Ir} \end{aligned}$	$0.15+0.03 \mathrm{c}$

Surge test:
Test voltage:
$5 \mathrm{kV} ; 1.2 / 50 \mu \mathrm{~s} ; 0.5 \mathrm{Ws}$
$50 \mathrm{~Hz}, 1 \mathrm{~min}$. acc. to EN 61 010-1
3700 V, inputs versus all other circuits as well as outer surface

2200 V, input circuits versus each other

3700 V, power supply versus outputs and outer surface

490 V, outputs versus each other and versus outer surface

Power supply $\rightarrow \bigcirc$

DC, AC power pack (DC or $50 \ldots 60 \mathrm{~Hz}$)
Table 1: Rated voltages and tolerances

Rated voltage U_{N}	Tolerance
$24 \ldots 60 \mathrm{~V}$ DC/AC	DC $-15 \ldots+33 \%$
$85 \ldots 230 \mathrm{~V}$ DC/AC	AC $\pm 15 \%$

Consumption: $\quad \leq 5 \mathrm{~W}$ resp. $\leq 7 \mathrm{VA}$

Programming connector on transducer

The programming connector on the transducer is connected by the programming cable PRKAB 560 to the RS-232 interface on the PC. The electrical insulation between the two is provided by the programming cable.

Installation data

Housing:

Housing material:

Housing P20/105
See Section "Dimensioned drawings"
Lexan 940 (polycarbonate),
flammability class V-O acc. to UL 94, self-extinguishing, non-dripping, free of halogen

Mounting:

Orientation:
Weight:

Terminals

Type:
Max. wire gauge:

Ambient tests

EN 60 068-2-6:
Acceleration:
Frequency range:

Number of cycles:
EN 60 068-2-27:
Acceleration:

EN 60 068-2-1/-2/-3:

Ambient conditions

Variations due to ambient temperature:

Nominal range of use for temperature:

Operating temperature:
Storage temperature:
Annual mean
relative humidity: $\leq 75 \%$

For snapping onto top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$) acc. to EN 50022

Any
Approx. 0.35 kg

Screw terminals with wire guards
$\leq 4.0 \mathrm{~mm} 2$ single wire or $2 \times 2.5 \mathrm{~mm} 2$ fine wire

Vibration
$\pm 2 \mathrm{~g}$
$10 \ldots 150 \ldots 10 \mathrm{~Hz}$, rate of frequency sweep: 1 octave/minute

10, in each of the three axes
Shock
$3 \times 50 \mathrm{~g}$
3 shocks each in 6 directions
Cold, dry heat, damp heat
$\pm 0.2 \% / 10 \mathrm{~K}$
$0 . . .15 \ldots 30 \ldots 45^{\circ} \mathrm{C}$ (usage group II)
-10 to $+55^{\circ} \mathrm{C}$
-40 to $+85^{\circ} \mathrm{C}$

Dimensioned drawings

Fig. 6. SINEAX M 563 in housing P20/105 clipped onto a top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 75 \mathrm{~mm}$, acc. to EN 50022).

SINEAX M 563 with 3 analogue outputs Programmable multi-transducer for industry

Table 2: SINEAX M 563 available as standard versions (3 analogue outputs)
The two versions of the transducer below programmed with the basic configuration are available ex stock. It is only necessary to quote the Order No.:

Description / Basic programming		Marking	Order No.
1. Mechanical design: 2. Rated input frequency: 3. Power supply / connection:	Housing P20/105 for rail mounting $50 \mathrm{~Hz}$ 24... 60 V DC/AC, external connection (standard)	$\begin{gathered} 563-4 \\ 1 \\ \mathbf{1} \\ \hline \end{gathered}$	146458
	$85 . .230 \mathrm{~V}$ DC/AC, external connection (standard)	2	146440
4. Full-scale output signal, output A:	$\mathrm{Y} 2=20 \mathrm{~mA}$	1	
5. Full-scale output signal, output B:	$\mathrm{Y} 2=20 \mathrm{~mA}$	1	
6. Full-scale output signal, output C:	$\mathrm{Y} 2=20 \mathrm{~mA}$	1	
7. Test certificate:	None supplied	0	
8. Configuration:	Basic configuration	0	
See Table 3 "Ordering Information"			
Basic configuration Input data			
9. Application:	4-wire, 3-phase system asymmetric load (NPS)	H	
10. Nominal input voltage:	Rated value Ur $=100 \mathrm{~V}$	A	
11. Nominal input current:	Rated value Ir $=2 \mathrm{~A}$	9	
12. Primary rating:	Without specification of primary rating	0	
Output A			
13. Meas. variable/meas. range (part 1):	$\mathrm{P} 1 ; \mathrm{X} 0=115.47 \mathrm{~W} ; \mathrm{X} 2=115.47 \mathrm{~W}$	2	
14. Meas. variable/meas. range (part 2):	Not used	0	
15. Signal range/system response:	$\mathrm{YO}=-20 \mathrm{~mA} ; \mathrm{Y} 2=20 \mathrm{~mA}$	1	
16. Characteristic:	Linear	1	
17. Limits:	Standard	1	
Output B			
18. Meas. variable/meas. range (part 1):	P2; $\mathrm{X} 0=115.47 \mathrm{~W} ; \mathrm{X} 2=115.47 \mathrm{~W}$	2	
19. Meas. variable/meas. range (part 2):	Not used	0	
20. Signal range/system response:	$\mathrm{YO}=-20 \mathrm{~mA} ; \mathrm{Y} 2=20 \mathrm{~mA}$	1	
21. Characteristic:	Linear	1	
22. Limits:	Standard	1	
Output C			
23. Meas. variable/meas. range (part 1):	P3; X0 = 115.47 W; X2 = 115.47 W	2	
24. Meas. variable/meas. range (part 2):	Not used	0	
25. Signal range/system response:	$\mathrm{YO}=-20 \mathrm{~mA} ; \mathrm{Y} 2=20 \mathrm{~mA}$		
26. Characteristic:	Linear	1	
27. Limits:	Standard	1	

\qquad according to "Table 3: Ordering information" should be stated for other versions.

Table 3: Ordering information

DESCRIPTION		MARKING
1. Mechanical design Housing P20/105 for rail mounting		563-4
2. Nominal input frequency		
2) 60 Hz		2
3. Power supply / Connection		
2) $85 \ldots 230 \mathrm{~V}$ DC/AC, external connection (standard)		2
3) $24 \ldots 60 \mathrm{VAC}$, internal connection from measuring input		3
4) $85 . .230 \mathrm{~V} \mathrm{AC}$, internal connection from measuring input		4
Lines 3 and 4: Not allowed with application E, F and J in feature 9 Line 3: \quad Not allowed with nominal input voltage $>60 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}$ (lines A and Z in feature 10) Line 4: $\quad \quad \quad$ ot allowed with nominal input voltage 57.74 V L-N (line 1 in feature 10) Please refer to remark under feature 10		
4. Output signal final value, output A		
9) Output A, Y2 [mA]	$(1 \leq \mathrm{Y} 2<20 \mathrm{~mA})$	9
Z) Output A, Y2 [V]	($5 \leq \mathrm{Y} 2 \leq 10 \mathrm{~V}$)	Z
5. Output signal final value, output B		
9) Output B, Y2 [mA]	$(1 \leq \mathrm{Y} 2<20 \mathrm{~mA})$	9
Z) Output B, Y2 [V]	($5 \leq \mathrm{Y} 2 \leq 10 \mathrm{~V}$)	Z
6. Output signal final value, output C		
9) Output C, Y2 [mA]	($1 \leq \mathrm{Y} 2<20 \mathrm{~mA}$)	9
Z) Output C, Y2 [V]	($5 \leq \mathrm{Y} 2 \leq 10 \mathrm{~V}$)	Z
7. Test records 0) Without test records		0
D) With test records in German		D
E) With test records in English		E
8. Configuration 0) Basic configuration programmed (see table 2)		0
9) Programmed to order		9
Line 0: No further details are necessary when specifying the basic configuration. Not allowed with internal power supply from measuring input. Line 9: The order must include a full specification of the following features 9 to 27 by means of a completely filled in form W 2407e with the configuration information.		

SINEAX M 563 with 3 analogue outputs Programmable multi-transducer for industry

Continuation "Table 3: Ordering Information"

[^2]Continuation "Table 3: Ordering information"

SINEAX M 563 with 3 analogue outputs Programmable multi-transducer for industry

Continuation "Table 3: Ordering information"

[^3]Continuation "Table 3: Ordering information"

Table 3 continued on next page!

SINEAX M 563 with 3 analogue outputs Programmable multi-transducer for industry

Continuation "Table 3: Ordering Information"

DESCRIPTION					Marking
23. Output C, measured variable, range Part 1 (power, power factor, frequency) 0) Part 1 not used			ica		
		A...F	G	H/J	
					0
1) P System XO	X2:	\bullet	\bullet	\bullet	1
2) P1 L1 X0:	X2:			\bullet	2
3) etc. analogue output A, feature 13				\bullet	3
24. Output C , measured variable, range Part 2 (current, voltage) 0) Part 2 not used					0
1) I System XO :	X2:	\bullet			1
2) I1 L1 X0:	X2:		\bullet	\bullet	2
3) etc. analogue output A, feature 14			\bullet	\bullet	3
25. Output C, signal range, system response 0) Not used					
					0
1) Signal (YO ... Y2SW): - Y2 ... Y2					1
2) Signal (Y0 ... Y2SW): $0 \ldots$ Y2					2
3) Signal (Y0 ... Y2SW): $0,2 \mathrm{Y} 2 \ldots$ Y2					3
9) Signal Y0 ... Y2SW:					9
A) Signal inversely (Y2SW ... Y0): $\mathrm{Y} 2 \mathrm{L.}$. - Y2					A
B) Signal inversely (Y2SW ... Y0): Y2 ... 0					B
C) Signal inversely (Y2SW ... Y0): Y2 ... 0,2 Y2					C
Z) Signal inversely Y2SW ... Y0:					Z
Lines 9 and Z : Y 2 = selected final value in feature 4 . Specify Y 0 and Y 2 SW in mA or V , within the limits $1 \leq \mathrm{Y} 2 \mathrm{SW} \leq \mathrm{Y} 2$ (additional error!); $-\mathrm{Y} 2 \mathrm{SW} \leq \mathrm{Y} 0 \leq 0,2 \mathrm{Y} 2 \mathrm{SW}$					
26. Output C, characteristic					
0) Not used					0
1) Characteristic linear					1
9) Characteristic kinked X1:	Y1:				9
Line 9: Specify kink point, X 1 (input) as value of the measured quantity, Y 1 (output) in mA or V , within the limits ($\mathrm{XO}+0.015 \mathrm{X} 2$) $\leq \mathrm{X} 1 \leq 0.985$ X2;$Y 0 \leq Y 1 \leq Y 2 S W$					
27. Output C, limitation0) Not used					
					0
1) Limitation Standard (Ymin $=\mathrm{Y} 0-0.2 \mathrm{Y} 2 ; \mathrm{Ymax}=1.2 \mathrm{Y} 2)$					1
9) Limitation Ymin:	Ymax.:				9
$(\mathrm{YO}-0.2 \mathrm{Y} 2 \mathrm{SW}) \leq \mathrm{Ymin} \leq \mathrm{YO} ; \quad \mathrm{Y} 2 \mathrm{SW} \leq \mathrm{Ymax} \leq 1.2 \mathrm{Y} 2 \mathrm{SW}$					

Electrical connections

SINEAX M 563 with 3 analogue outputs Programmable multi-transducer for industry

SINEAX M 563 with 3 analogue outputs Programmable multi-transducer for industry

Measuring input		
System / application	Terminals	
4-wire 3-phase asymmetric load, Open Y connection	Low-voltage system	2 single-pole insulated voltage transformers in high-voltage system

Relationship between PF, QF and LF

Fig. 7. Active power PF _-_, reactive power QF ------, power factor LF-----.

Standard accessories

1 Operating Instructions for SINEAX M 563 in three languages: German, French, English
1 blank type label, for recording programmed settings

Table 4: Accessories and spare parts

Description	Order No.
Programming cable PRKAB 560	147779
Ancillary cable for SINEAX M 563	143587
Configuration Software M 560 for SINEAX M 563 Windows 3.1 or higher on CD in German, English, French, Italian and Dutch (Download free of charge under http://www.gmc-instruments.com) In addition, the CD contains all configuration programmes presently available for Camille Bauer products.	146557
Operating Instructions M 563-4 B d-f-e in three languages: German, French, English	143579

[^4]

[^0]: 2) Overvoltage category III
 ${ }^{3)}$ Overvoltage category II
[^1]: ${ }^{1)}$ Basic accuracy 1,0 c for applications with phase-shift

[^2]: * Basic accuracy 1.0 c

[^3]: Table 3 continued on next page!

[^4]: Printed in Switzerland • Subject to change without notice • Edition 03.02 • Data sheet No. M 563-4 Le

